

HRVATSKO ASFALTERSKO DRUŠTVO

CROATIAN ASPHALT ASSOCIATION

THE ASSESSMENT OF THE LIFETIME AND THE RESIDUAL DURATION OF THE ROADS

PROCJENA ŽIVOTNOG VIJEKA I PREOSTALOG TRAJANJA CESTE

XAVIER CARBONNEAU, COLAS

WE OPEN THE WAY

MEÐUNARODNI SEMINAR ASFALTNI KOLNICI 2021

INTERNATIONAL SEMINAR ASPHALT PAVEMENTS 2021

OPATIJA, 30.09. - 01.10. 2021.

D

Lifetime of Roads

Pavement Design

> Survey

> Residual lifetime (DVDC)

> What's an Old binder ?

> Expectations

Conclusion

LIFETIME OF THE ROAD

VUE pendant la période récente le transport a assuré son rôle malgré lockdown !

LIFETIME OF THE ROAD

LIFETIME OF THE ROAD

GEPUR : Gestion et Entretien du Patrimoine Urbain et Routier - Méthodes, outils et techniques

> Volet n°1 : Routes Interurbaines et traverses d'agglomérations

	Catégorie 1	Catégorie 2	Catégorie 3
BBTM	8 à 10	8 à 12	-
BBM	8 à 12	10 à 14	<mark>1</mark> 2 à 18
BBSG ou BBME	8 à 12	10 à 14	12 à 18
BBS	-	-	10 à 20
ESU	6 à 10	8 à 14	10 à 20
MBCF	6	7	8

Mix	Service life (years)	Layer thicknesses		
1. SMA 16 – reference	16*	0.030 m		
2. SMA 11 - 40% RAP + PMB + LTA	10 - 14**	0.030 m		
3. SMA 8 - 60% RAP + PMB	10 - 14**	0.030 m		
4. SMA 11 - Long service life	20**	0.035 m		
5. PA 8 - top layer 2L PA + PMB	10*	0.025 m		
6. SMA 8 - 60% RAP + regular bitumen	14**	0.030 m		
* Based on (Keijzer, et al., 2020).				

** Expert guess based on the average service life of SMA 16

*** All back 2 pave D5.2 and (Keijzer, et al., 2020).

1 Functionnal characteristics Noise reduction / Skid resistance

From T Parry EAPA Workshop on Pavement LCM

PAVEMENT DESIGN

Define the structure (layers nature & thickness) able to support the trafic (estimated) under define climatic conditions, with a limited budget.

	Wearing course = top layers Binder course	evenness, skid resistance, low rolling noise			
	Base layer	Structural stiffness → Mechanical and thermal protection of the subgrade			
	Sub-base layer (if necessary)				
	Capping layer (if necessary)	Subgrade : drainage + lime / cement treatment (if			
	Soil	necessary) to improve soil characteristics as freeze resistance or bearing			
	With new constraints :	capacity			
- Less money					

- New parameters (CO2 emissions) New products -
- Durability
- Climatic change Resilient

PAVEMENT DESIGN

PAVEMENT DESIGN Thicknesses for Base course for Lifetime 20y

RÉSEAU ROUTIER NATIONAL

CATALOGUE DES STRUCTURES TYPES DE CHAUSSÉES NEUVES

Knowledge of network

SURVEY

Balance between needs & available budget

Adapted to raod category (largest part of the network less documented ?)

Only a picture one day ..

STRUCTURE

SURVEY

D

Cracking

Ravelling

Rutting

Potholes

X : 1854.0 - Y : 90.6 - Val : 2197.

May 0

C Intensity C Range @ Rectified Rang

: 1982.4 - Y : 149.4 - Val : 2190.10

Left Right

Open Current Hie 962/2120 Current Hie 962/2120 Current Hie Proc Selects Current Hie Current Hi

C
Ø
Ø
Ø

Marg
Parto State
Parto State

Marg
Parto State
Parto State

Marg
Parto State
Parto State

Parto State
Parto State<

Profie Disp. C Intensity R Range C Rectf, Ring C CCD 259 Y Quit

Range IF Auto

SURVEY

Required threholds for each section

€

Network Maintenance Policy

COLLABORATIVE RESEARCH PROGRAM 5 years – 3,6 M€ - 41 partners

1 Pavement degradations mechanism

- Structural behaviour and evolution
- Rutting unbound materials / Interfaces /Aging / winter damage

2 knowledge of network

- Surveys comparison between methods
- Lack to improve maintenance stragety

3 Residual lifetime

- Modelling pavement structure damage
- Probabilistic approach for structural index evolution
- Focus on wearing courses

D

D

WINTER DAMAGE- EFFECT OF FREEZE

Effect of small amount of water

IN SITU INTERLAYER BONDING MEASUREMENT

Necessary Evolution of methodologies

Quality of the results

Road surface indicators (relevant – useful for qualification of road)

New indicators

Syman

Aigle 3D

D

PPS+

WHAT'S AN OLD ROAD ?

STUDY OF WEARING COURSES

WHAT'S AN OLD ROAD ?

Chanos RD 67 (FR) BBMc 0/10 8 years ~ 80 T/d No crack. Few spots with raveling Wearing course still in place

Jihlava By Pass (CZ) BAU SMA 11 S 10 years Trafic : cores from emergency lane No crack local raveling Wearing course still in place

Circuit du Castellet (FR) BBMc 0/10 15 years Racetrack Few cracks Coring before resurfacing A4 Zagreb Goričan (HR)

A13 Road (DK 1,2,3) SMA11 Colflex 8 years Trafic : 10000 v/d with ~ 20% truck Very few cracks. Some spots of mastic removed Wearing course still in place

Rétie N118 (BEL) SMA D2 0/6,3 10 ans 3000 T/d Few cracks (fatigue) Wearing course still in place

Manchester Airport (UK) BBA 0/14 8 years CT5/NS4 (guide STAC) No damage -Still in place

M7 PK 102 Slow lane (HU) SMA 12 18 years Buses 229/d - - T 364/d - PL trailer 458/d - Semi trailer 2778/d Coring before resurfacing

Limay D190 (FR) BBSG 010 21 years 10000/d (~ 800 T) 2011 Cracks fatigue and rutting RAP samples during milling

M1 Drogheda By pass Hot Rolled Asphalt (IRL) 16 years 40000 v/d 9% Trucks Ravelling Coring before maintenance

A5 Morocco AC 14 with hard binder 9 years Fatigue cracking Still in place

WHAT'S AN OLD ROAD ?

D

Change of Surface Modulus, |E'|s 0 1 Month 0 Month 1.5 inches Depth of the Asphalt Layer (38,mm) Nonuniform Aging Change of Base-Line Modulus, |E'| Uniform Aging Initial Modulus |E'|_b @ 14 months z |E'|s @ 14 months Figure 13. Idealisation of modulus gradient in asphalt pavements. « Characteristics of undamaged asphalt mixtures in tension compression » R. L Lytton, F Gu, Y Zhang, X Lue, IJPE vol 19 N°3 p192-204

Meaning of recovered binders ?

EXPECTATIONS

DURABILITY IS PART OF THE SOLUTION BETTER KNOWLEDGE OF USE STAGE

CONSTRUCTION WORKS ASSESMENT INFORMATION

BITUMEN TECHNOLOGY

